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Calculation of Unsteady
Linearized Euler Flows in
Cascades Using Harmonically
Deforming Grids
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ABSTRACT A method for calculating unsteady, inviscid, compressible
flows in cascades is presented. Using the linearized Euler technique, the
flow is decomposed-into a steady or mean flow plus a harmonically vary-
ing small disturbance flow. The equations that describe the small distur-
bance flow are linear variable codtlcient equations, and are solved using a
pseudo-time time marching Lax-Wendroff technique. Unlike previous lin-
earized methods, however, the solution is computed on a harmonically de-
forming computational grid that conforms to the motion of the vibrating
airfoils. The mean flow and perturbation flow solutions are defined in the
deforming coordinate system rather than in a coordinate system fixed in
space. Hence, no extrapolation terms are required to implement the upwash
boundary conditions at the airfoil surfaces significantly improving the accu-
racy of the method. For transonic flow calculations, unsteady shock motions
are modelled using shock capturing. The unsteady loads due to the shock
motion are then seen as pressure impulses, Representative computational
results are presented for transonic channel flows and subsonic and transonic
cascade flows.

1.1 Introduction

To understand and predict flutter and forced response in turbomachinery

blade rows, aeroelasticians require accurate and efficient models of the un-

steady flow fields that arise from blade motion and incident gusts. Over

the past two decades, many computational methods have been developed
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2 1. Calculation of Unsteady Linearized Euler Flows in Cascades

to analyze unsteady flows in turbomachinery. For example, the linearized

potential methods have been developed extensively [WG81, VC82, VC84,

VU88, HV91]. Linearized potential analyses are computationally very ef-

ficient, and for aeroelastic applications, the small disturbance assumption
is not a severe restriction. However, because of the inherent assumption of

irrotational and isentropic flow, the linearized potential analyses are only

valid for subsonic and low transonic speeds and flows without inlet swirl.

To model the more complex flow fields found in transonic compressors

and turbines, and as computer speeds and storage have improved, several

time-accurate time-marching Euhr [Hod84, FLM87, Gi188, HSR91] and

Navier-Stokes [Rai89a, Rai89b, GH91] codes have been developed. These
codes, unlike the linearized potential codes, account for both steady and

unsteady vorticity and entropy. However, despite the recent advances in

computer hardware, the time-marching approach is still computationally

too expensive for routine design use.

Recently, several investigators have begun to develop linearized Euler

analyses [NS76, HC89, HC91, LG91]. As in the linearized potential tech-
nique, the unsteady flow is assumed to be composed of a nonlinear mean

flow plus a harmonically varying small perturbation flow. The unsteady

perturbation flow is governed by the linearized Euler equations. Using this
model of the flow accounts for entropy and vorticity generation and shocks,

and permits analysis of unsteady flows about rotational nonisentropic mean

flows. Furthermore, the solution of the linearized Euler equations, while not

as efficient as solution of the linearized potential equations, is one to two

orders of magnitude more efficient than computing the full nonlinear flow

field while still retaining the essential physics of unsteady flows associated
with forced response and the onset of flutter.

In this paper, a recently developed Euler analysis is presented. The

linearized Euler equations are discretized and solved using a conserva-

tive pseudo-time time marching Lax-Wendroff scheme [NS76, Ni82, Dan87,

HC91]. Two important features of the present analysis are the use of a de-

forming computational grid for flutter calculations, and shock capturing for
transonic flow calculations. For flutter calculations, the use of a deforming

computational grid eliminates large error producing gradient terms that

would otherwise appear in the upwash boundary conditions and in the

evaluation of the unsteady pressure on the airfoil surfaces. For transonic
flow calculations, shock capturing is used to model the pressure impulse

resulting from small harmonic motion of the shock. Shock capturing is

considerably easier to implement than shock fitting. However, to predict

correctly the unsteady loads due to the shock impulse, one must use a dis.

cretization scheme for the unsteady linearized flow solver that is a faithful

linearization of the nonlinear flow solver [LG91]. Representative computa-
tional results are presented that demonstrate the capability of the method

to predict unsteady subsonic and transonic flows.
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1.2 Theory

1.2.1 THE LINEARIZED EULER EQUATIONS

For compressible flows in which viscous forces may be neglected, the un-

steady flow is governed by the Euler equations representing the conservation

of mass, momentum, and energy, i.e,

oO + oP od
-_- -_x + -_y =0 (1.1/

Here, T_Iis the vector of conservation variables and F and (_ are the so-

called flux vectors. These are given by

= _= b,_2+_ _;= _a_

Where _ is the static density, fi and _ are the z- and y-components of

the velocity,/5 is the pressure, i is the internal energy, and h0 is the total

enthalpy.

Most previous linearized analyses have used computational grids fixed

in space. To apply the upwash boundary condition at the airfoil surface,

the boundary conditions must be extrapolated from the instantaneous po-

sition of the airfoil to the mean airfoil position, that is, to the boundary
of the fixed grid. The additional extrapolation terms appearing in the up-

wash boundary condition contain velocity gradient terms that can be large

and difficult to evaluate accurately, especially near the leading and trailing

edges of the airfoils. Whitehead and Grant [WG81] overcame this difficulty

for rigid-body airfoil motion by using a transformed velocity potential that

can be viewed as equivalent to using a computational grid that undergoes

rigid-body motion. Hall [Hal92] has recently developed a linearized poten-

tial analysis based on a variational principle that includes the effects of a

grid undergoing arbitrary deformations thus allowing both rigid-body and
flexible blade motion.

In the present linearized Euler analysis, we also make use of a deform-

ing grid. The physical coordinates z, y,t are related to the computational

coordinates _, _, r by the transformation

z(_, r), r) = _ + f(_, r/, r) (1.2)

y(5, _, r) = ,7+ g(5,., r) (1.3)

t(_,., r) = r (1.4)

The grid motion functions f and g are chosen so that the motion of the

grid conforms to the motion of the airfoils. A typical example of unsteady
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FIGURE 1.1. Left: Grid in computational coordinate system, _, r/. Right: Grid
in physica/ coordinate system, x,y, for the case of a cascade of airfoils plunging

with an interblade phase angle, tr, of 90 deg. The cascade shown is Standard
Configuration No. 10.

grid motion is shown in Fig. 1.1. Shown is a cascade of airfoils designated

Standard Configuration No. 10 [Fragl] vibrating in pitch with an interblade

phase angle, _, of 90 deg. In the computational coordinate system, the

airfoils and the grid appear to be stationary; in the physical domain, the

airfoils and grid deform unsteadily.

Integrating the differential form of the Euler equations [Eq. (1.1)] over a
control volume D that is fixed in the computational coordinate system - but

deforming in the physical coordinate system - and applying the divergence

theorem gives the Euler equations in integral form, i.e.,

d,,dy+j,,,, e = 05)
With some manipulation, Eq. (1.5) can be expressed as

- <gg

^ ¢9g

-_gf _gy_ ((_ U___r)__1 d_=0 (1.6,

Equation (1.6) is valid for both small and large disturbance unsteady

[tows. Large amplitude flows, which exhibit nonlinear behavior, could be
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computed by time marching Eq. (1.6). However, such computations are
very expensive. Fortunately, for many flows of interest in aeroelastic ap-

plications, the unsteadiness in the flow is temporally harmonic and small

compared with the mean flow. Therefore, to simplify the problem and also

reduce the required computational time, we assume that the flow is decom-
posed into a zeroth-order mean or steady flow plus a forst-order unsteady

perturbation flow. Hence,

O(_, q, r) = V(_, 17)+ u(_, _) d_" (1.7)

Here, U is the vector of conservation variables representing the mean flow
field, and u is the vector of small perturbation harmonic amplitudes of the

conservation variables. The motion of the airfoils, and hence the grid, is

assumed to be small and harmonic so that Eqs. (1.2)-(1.4) are replaced by

x(_, rl, v) -" _ + f(_, T/)ejwT (1.8)

y(_, ri, r) = r/+ g(_, r/)e j°'" (1.9)

t(_, 7, _) = r (1.10)

where now f and g represent the small perturbation harmonic amplitudes

of the grid motion.

Substitution of the perturbation assumptions into the nonlinear Euler

equations, Eq. (1.6), and collection of terms of zeroth and first-order re-

suits in the mean flow Euler equations and the linearized Euler equations

respectively. The mean flow Euler equations in integral form are given by

_o (Fd_-Gd_)=0 (1.11)
D

The linearized Euler equations are given by

0G

Ju'//v u d_d'l + _o_ (-_u u d'7- -_u d_) =

- U(dfdq+d_dg) + jw_oo(fUdq-gUd_)

- ___t) (Fdg - Gdf) (1.12)

The Jacobian matrices 0F/0U and aG/0U appearing in Eq. (1.12)are

evaluated usingthe mean flowsolution.For example, for an idealgas with

constantspecificheats,one findsthat the Jacobian 0F/0U isgiven by

0

OF [ _ U 2 + _ V 2

-UV
-_= Iv(_v_,'-ho)

1 0-(v-3)u -(v-1)v v i
V U

ho-(v-1)u 2 -(7-1)vv "rv J
(1.13)
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where 1/3 = U 2 + V 2.

The mean flow [described by (1.11)] is independent of the unsteady per-

turbation flow. The linearized Euler equations, Eq. (1.12), are linear, in-

homogeneous, variable coefficient equations. The variable coefficients, i.e.,

the Jacobians, are functions of the mean flow field. The inhomogeneous

portion of Eq. (1.12), that is, the right-hand side, is a function of the mean

flow and the prescribed grid motion.

1.2.2 NEAR-FIELD BOUNDARY CONDITIONS

Periodicity

Because the unsteady flow is governed by linear equations, the response

of the cascade to blade motion or a gust may be found by decomposing

the disturbance into a sum of travelling wave modes each with a different

frequency, w, and interblade phase angle, a. The total response of the cas-
cade to the sum of modes is equal to the sum of the responses to each of

the individual modes. Without loss of generality, we consider here a sin-

gle travelling wave mode. The complex periodicity condition upstream and
down stream of the cascade is then

u(_, rl + G) = u(_, _?)ej_ (1.14)

where G is the blade-to-blade gap. This periodicity condition allows the

computational domain to be reduced to a single blade passage.

Flow Tangency

The upwash boundary condition on the airfoil surface is

v.n= jwr +V. r -n (1.15)

where V and v are the mean perturbation flow velocities, n and r are unit

vectors normal to and tangent to the mean airfoil surface, s is the arc length

along the airfoil surface, and r is the perturbation displacement of the
airfoil surface. The two terms on the right-hand side represent the upwash
due to the local translation and rotation of the airfoil surface. Note that

because we use a deforming computational grid, no extrapolation terms are

required.

1.2.3 NUMERICAL INTEGRATION

To integrate numerically the linearized Euler equations, we use the pseudo-

time time marching approach suggested by Ni and Sisto [NS76]. The un-

steady perturbation amplitude u is assumed to vary with time so that
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Eq. (1.7) is replaced by

O(_, T/, r) = U(_, t/) + u(_, T/,r)e J_ (1.16)

Substitution of Eq. (1.16) into Eq.(1.6) and collection of terms of equd
order results in the pseudo time-dependent linearized Euler equations,

0 OF d_) = b (1.17)

where b is the same as the right-hand side of the original (time-invariant)

linearized Euler equation, Eq. (1.12). Note that the first term on the left-
hand side is the only term that does not appear in the original linearized

Euler equation. This pseudo-time dependent term is driven to zero by time

marching the equation to steady state.

Note the similarity of the ]inearized Euler equations, Eq. (1.17), to the

nonlinear time-dependent Euler equations, Eq. (1.5). One advantage of the
pseudo-time time-marching approach is that several nonlinear Euler solvers

have been developed that can be applied with little modification to the lin-

earized Euler equations. For example, the conservation variables__ in the

nonlinear Euler solver are replaced by the perturbation conservation vari-
ables u in the linearized Euler solver. The nonlinear flux vectors _' and

are replaced by the perturbation flux vectors (aF/aU)u and (aG/aO)u.
Furthermore, since only the steady state solution of the perturbation solu-

tion u is desired, acceleration techniques such as multi-grid and local time

stepping may be used to reduce dramatically the required computational
time.

For subsonic flow calculations, any consistent discretization of the lin-

earized Euler equations is sumcient to produce consistent unsteady flow

solutions. For transonic flows with shock capturing, however, the discretized
perturbation equations should be a faithful linearization of the discretized

unsteady nonlinear equations used to compute the steady flow [LG91]. In
the present study, we use Ni's conservative finite volume implementation of

the Lax-Wendroff method [Ni82, Dan87] to compute both the steady and
unsteady flow fields. Local time stepping and Ni's multiple-grid accelera-

tion technique are used to speed convergence in both the steady nonlinear

Euler and unsteady linearized Euler codes. For subsonic flows, a fourth-

difference smoothing operator is used to eliminate sawtooth modes. For
transonic flows, a combination of fourth-difference and second difference

smoothing is used to capture shocks.

1.2.4 FAR-FIELD BOUNDARY CONDITIONS

Because the computational domain extends a finite distance in the axial

direction (see Fig. 1.1), far-field boundary conditions are required at the

far-field boundaries to prevent spurious reflections of outgoing waves. Pre-

vious investigators have found analytical expressions for the behavior of
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the linearized equations in the far field, and have matched these far-field
solutions to the near-field numerical solutions at the upstream and down-

stream far-field boundaries. These analytical solutions were found for the

special case of uniform mean flow in the far field. For transonic Euler flows,
however, the mean flow in the far field is in general nonuniform. For ex-

ample, the presence of a shock or multiple shocks in the blade passage will

produce nonuniform total pressure in the downstream region. No general

analytical expression has been developed for this situation.

To overcome this difficulty, the authors have developed an alternative

treatment the far-field boundary conditions. Instead of finding the analyt-

ical eigenmodes of the linearized Euler equations in the far-field, we find

the eigenmodes of the discretized linearized Euler equations. The numer-

ical eigenmodes are then matched to the numerical near-field solution at

the far-field boundaries. This procedure, although computationally less ef-

ficient, produces numerically exact nonreflecting boundary conditions. Ref-

erence [HC91] describes the implementation of these boundary conditions
in more detail.

1.3 Results

1.3.1 TRANSONIC CHANNEL FLOW

The firsttestcase tobe presentedisof transonicflow through a diverging

channel. This case is presented to demonstrate the ability of the linearized

Euler method to model accurately shock motion using shock capturing.

The channel considered here has a height, A, given by

A(x)=Ainlet{1.10313+.10313tanh[5(x-1)]}, 0<x<l (1.18)

So that the results can be compared to a one-dimensionM shock-fitting

theory, Ainle t is taken to be small compared with the channel length

(Ainle t = 0.01). The inflow total pressure, PT, total density, Pr, and flow

velocity, U, are 1.0, 1.364, and 1.0, respectively. The back pressure, Pexit is
0.7422. Shown in Fig. 1.2 is the Mach number and pressure distribution as

computed by the present nonlinear steady Euler solver using a 129 × 5 node

computational grid. Also shown for comparison is the solution found using

a steady quasi-one-dimensional, shock-fitting, Euler solver using 1001 grid

nodes in the x direction. Note the excellent agreement between the two
approaches. The only noticeable differences occur at the shock where the

present nonlinear Euler solver smears the shock over about five grid nodes.

Next, we consider the case of a quasi-steady perturbation in the back

pressure. The perturbation solution was computed using three different

methods. We first computed the solution using the present linearised solver;

then using a quasi one-dimensional, shock-fitting, linearized Euler solver;
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FIGURE 1.2. Steady transonic flow in a diverging channel.

and finally, by differencing the solutions found using the present nonlinear

steady Euler solver at two slightly different back pressures. The results

are shown in Fig. 1.3. The three solutions are seen to be in very good

agreement away from the shock. At the shock, the two shock-capturing

techniques produce an impulse of pressure. This impulse represents the

load exerted on the channel walls due to the displacement of the shock.

Note that the present linearized Euler solution is nearly identical to the

differenced nonlinear solutions•

We now consider the ease of an unsteady variation in the back pres-

sure. Shown in Fig. 1.4 are the computed real and imaginary parts of the

unsteady pressure distribution due to a unit perturbation in the back pres-

sure with an excitation frequency, w, of 1.0. The results of the present lin-

earized Euler code agree well with the quasi one-dimensional, shock-fitting,

linearized Euler solver.

To determine whether the present linearized Euler solver correctly pre-

dicts the unsteady loads induced by the motion of the shock, we integrated

the pressure along the lower wall to obtain the "wall force." These results

are tabulated in Table 1.1 for several different excitation frequencies. Also

given in Table 1.1 is the wall force computed using the shock-fitting code.

For our purposes, the grid is sufficiently fine that the shock-fit solution
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FIGURE 1.3. Perturbation pressure in a diverging channel due to a steady per-
turbation in back pressure. Bottom figure shows detail of shock impulse.

may be considered exact. For low frequencies, the two codes are in almost

perfect agreement suggesting that the shock impulse found using shock cap-

turing is properly modelled. For the higher frequency cases, the agreement

is still good, but there is a slight error in the phase of the wall force. We

believe that these differences are due to dispersion errors in regions away

from the shock rather than a limitation in shock capturing at high frequen-

cies. Finally, For the w = 1 case, we deliberately introduced two types of
inconsistency into the linearized Euler solver to determine their influences

on the solutions. In the first case, we used a different level of smoothing in

the linearized unsteady Euler code than was used in the nonlinear steady
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Euler code. In the second case, global time stepping was used in the steady

Euler code and local time stepping was used in the linearized unsteady

code. In both cases, the inconsistency between steady and unsteady codes

is seen to increase the error in the unsteady wall force. The errors are much

more pronounced, however, for the latter case. These results are consistent

with the claim by Lindquist and Giles that the linearized code should be a

faithful linearization of the nonlinear code [LG91].

1.3.2 SUBSONIC FLOW IN A COMPRESSOR

Having demonstrated the accuracy of the method for transonicchannel

flow,we next considerunsteady flowsin a compressor geometry to demon-

stratethe ability of the method to accurately compute the unsteady flow
about a cascade of loaded airfoils. The cascade considered is the newly des-

ignated Standard Configuration No. 10 [Fra91]. The airfoils have a circular

arc camber distribution wiLh a maximum height of 5 percent of the chord

with a slightly modified NACA 0006 thickness distribution. The stagger
angle, O, is 45 deg and the gap-to-chord ratio, G, is 1.0. For the subsonic

case considered here, the steady inflow angle, f_-oo, is 55 deg and the in-

flow Mach number, M-oo, is 0.7. Under these conditions, the flow is entirely
subsonic with a maximum Mach number on the suction surface of about

0.92.

Figure 1.5 shows the computed unsteady pressure distribution for the
case where the airfoils pitch about points near their midchords with an
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TABLE 1.1. Predicted pressure loads in a transonic diverging channel due to an
unsteady perturbation in back pressure.

Frequency, 0J Scheme Wall Force Shock Force

0.0 1D Shock Fitting 1.0305 + 0.0000j 0.5133 + 0.0000j
Nonlinear Euhr ° 1.0326 + 0.0000j
Present Method 1.0320 + 0.0000j

0.5 1D Shock Fitting 0,6886 + 0.6115j 0.1796 - 0.4426j
Present Method 0.6863 + 0.6100j

1.0 1D Shock Fitting 0.1249 - 0.6267j -0.2543 - 0.2797./
Present Method 0.1293 - 0.6222j
Present Method b 0.1315 - 0.6184j

Present Method c 0.1778 - 0.6133j

2.0 1D Shock Fitting -0.0807 - 0.1801j -0.1182 + 0.1667j
Present Method -0.0750 - 0.1831j

aResults from the steady analysis were found for two slightly different back pressures. The

two solutions were then differenced and normali_ed by APexit.
b ........ ""

Smoothing coefficient in steady analysis Is 0.15; smoothing coefficient in unsteady analysis

is

_'Global time stepping used in steady analysis; local time stepping used in unsteady anab

O. O.

ysis.

interblade phase angle, _, of 90 deg and a reduced frequency, _, of 0.5

(Standard Configuration NO. 10, Case 2). Here, the pressure is nondimen-

sionalized by the upstream steady flow quantity pVT_. To assess the accuracy
of the analysis, solutions were computed on both a 65 x 17 and a 129 x 33

node grid. The good agreement between the coarse and fine grid solutions

indicates that the fine grid solution is nearly grid converged. Also shown for

comparison is the solution found using a deforming grid linearized potential

method [Ha]92]. Note that the solutions are well behaved in the neighbor-

hood of the leading and trailing edges. The use of a deforming grid greatly

improves the accuracy of the solution in these regions.
The linearized Euler solver is very efficient. The unsteady solution com-

puted on the 65 x 17 node grid required 565 seconds of computer time on an

IBM RISC System/6000 model 320 computer. For comparison, the steady

solution required I10 seconds.

Having computed the unsteady pressure distribution on the airfoil sur-

face, one can integrate to obtain the pitching moment. Shown in Figure i.6

is the imaginary part of the pitching moment computed for a range of

interblade phase angles, -180 < _, _< 180, at a reduced frequency, _, of

1.0. Also shown is the pitching moment computed using Hall's deforming
grid linearized potential method. The peaks in the solution are acoustic

resonances. We were unable to obtain converged solutions near One of the

upstream acoustic resonance points (or = 117.1 deg). Note that there is gen-

erally good agreement between the linearized Euler and linearized potential
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FIGURE 1.5. Unsteady pressure on surface of subsonic compressor blade due to

pitching motion (Standard Configuration No. 10, Case 2). The reduced frequency,
_, is 0.5, _nd the interblade phase angle, _, is 90 deg.

solution. One noticeable difference is seen at tr = -20 deg. This point is

very near one of the upstream acoustic resonance points (tr = -26.93).
Nevertheless, the good agreement elsewhere in the superresonant regions
demonstrates the effectiveness of the numerical far-field boundary condi-
tions.
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FIGURE 1.6. Imaginary pitching moment acting on subsonic compressor blades
due to pitching motion (Standard Configuration No. 10). The reduced frequency,
_, is 1.0.

1.3.3 TRANSONIC FLOW IN A COMPRESSOR

The final case to be considered here is flow through a transonic compressor.

The cascade is again Standard Configuration No. 10. However, the flow con-

ditions are such that there is a supersonic patch on the suction surface of the

airfoil. The mean inflow angle, IS-co, is 58 deg an d the inflow Mach number,
M_co, is 0.8. Shown in Fig. 1.7 is the computed isentropic Mach number
distribution on the surface of the airfoil. Also shown is the Mach number

distribution computed using a full potentiM technique [VC84, VU88]. Note

that for the solution computed with the present nonlinear Euler solver, the

shock is smeared over about five grid points.
Having computed the steady flow solution, we consider the case of the

airfoils vibrating in pitch with an interblade phase angle, ¢r, of 90 deg

with a reduced frequency, _, of 1.0 (Standard Configuration No. 10, Case

20). Figure 1.8 shows the computed unsteady pressure distribution on the

airfoil surface. The shock impulse representing the unsteady load due to

unsteady shock motion is clearly visible on the suction surface. Also shown
is the pressure distribution computed using Verdon's linearized potential

code, LINSUB code [VU88]. The linearized Euler and linearized potential

solutions agree quite well on the pressure surface. However, the agreement
is not as good on the suction surface, particularly ahead of the shock. This
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FIGURE 1.7. Steady pressure distribution on transfnic compressor blade (Stan-
dard Configuration No. 10). The inflow Mach number, M, is 0.8, the gap-to-chord
ratio, G, is 1.0, the stagger angle, O, is 45 deg., and the inflow angle, f_-o_, is 58
deg.

difference could arise from neglecting entropy and vorticity generation in

the steady and unsteady potential analyses.

1.4 Summary

A two-dimensional linearized Euler solver has been developed that is capa-

ble of computing unsteady small disturbance flows in cascades. Two impor-

tant features of the analysis are the use of a deforming grid to improve the
accuracy of flutter calculations, and the use of shock capturing to model

shock motion. Using the pseudo-time time-marching technique, one can
solve the linearized equations with any of a number of well known schemes

originally developed to solve the nonlinear Euler equations. Furthermore,

since only the steady state harmonic perturbation solution is desired, con-

vergence acceleration techniques may be used to speed convergence. Re-

sults presented in the paper clearly demonstrate the ability of the analysis

to predict unsteady subsonic and transonic flows accurately and efficiently.
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FIGURE 1.8. Unsteady pressure on surface of transonic compressor blade due

to pitching motion (Standard Configuration No. 10, Case 20). The reduced fre-

quency, _, is 1.0, and the interblade phase angle, 0% is 90 deg.
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